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Abstract-This is a companion paper of the authors' previous one. In this paper. a convenient form
of the refined two-dimensional shell theory for the thick cylindrical shells proposed by the authors
is given; and a simple and efficient Co quadrilateral shell clement is developed by the quasi­
conforming element technique. The element stiffness matrilt presented here is given ellplicitly. This
CO thick/thin shell elt:mt:nt satisfit:s the rigid body motilln. passes the patch t~'St and e:othibits nt:itht:r
shear locking and mt:mbrane locking nor spurious kinematic modes. The numerical e:otamples solved
here demonstrate that the CO quasi-conforming shell clement gives very good results in the analysis
of both thick and thin shells.

(NTRODUCTION

CO shell linite dements arc simple and etlicient clements in the analysis of thin structures.
However, many CO dements exhibit some dcliciencies in the analysis of thin plates and
shells. such as the shear locking and spurious kinematic modes. In the past few years. the
she.tr locking and spurious modes of C II clements have received increasing allention from
researchers (Hughes and Hinton. 19H6; Atluri and Yagawa. 19l:lH). and many approaches
were proposed to construct reliable and accurate ('0 c1eme.:nts for the analysis of both thick
and thin plates and shells. Up to now. most of the C' clements are based on the degenerated
shell element given by Ahmad el til. (1970). The transve.:rse sheur locking problem in the
degenerated shell clement cun be solved by the usc of the reduced or selective integmtion
technique (Zienkiewicz el til.• 1971; Hughes. 1987). Howe.:ver. the re.:duced integration may
result in the.: de.:velopment of spurious zero strain energy mode.:s. Conse.:quently. these
kind of elements arc not very reliable. The employment of discrete KirchholT constraints
(Wempner et til.• 1968; Li et til.• 1985) is another approach to avoid sheur locking for CO
elements. Unfortunately, the discrete KirchholT constraints lead to complex inversion and
calculations in the formulation of the clement stiffness matrix (Li el til.• 19H5). A ne.:w
method to construct CO clements. is to employ the.: so-called enhanced interpolations of the
transverse shear strain and membrane strain (Huang and Hinton. 1986) or assumed natural­
coordinate strains (Park and Stanley. 1986). The ell elements based on the enhanced strains
can overcome the shear locking and spurious kinematic mode problems and give quite good
results. However, like all other degenerated dements. numerical integration is used in the
formulation of these elements even in the case of flat plate clements. As it is well known.
the numericul integration is very time consuming especially in nonlinear problems where
the stilTness matrix has to be evaluated many times during the analysis.

It seems that Ashwell (1976) first used the term of strain element. But in his strain
elements. the strain functions are only used to form curved finite element shape functions
in order to satisfy the rigid body motion of a curved element. Therefore. these strain
elements still belong to the conventional assumed displacement elements. In Huang and
Hinton's element (1986). only the transverse shear strain and membrane strain are interp­
olated. In Park and Stanley's element (1986), the strains are interpolated along the so-called
reference lines. Consequently, elements given by Huang and Hinton (1986). and Park and
Stanley (1986) are not based on the general strain fields.
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Tang t'l al. (19XO) and Chen and Liu (1980) proposed a simple and fundamental finite
element approach called "Quasi-Conforming Element Technique" (QCT). In the quasi­
conforming element. the element strain fields are interpolated directly rather than obtained
from the assumed displacement field. The element strains can be expressed in terms of the
element nodal displacement vector by integration along the element boundaries together
with the string net functions. which are similar to the edge displacement interpolations in
Pian's (1964) hybrid stress element. Based on the element strain field. the element stiffness
matrix can be evaluated in the usual way. Another very important feature of quasi-con­
forming elements is that all the integrations can be done directly without the employment
of the numerical integration. Consequently. the quasi-conforming element technique can
give the explicit form of the stiffness matrix. Furthermore. because the strain fields are
interpolated directly rather than being derived from the assumed displacement field. the
quasi-conforming elements give very accurate stresses (Tang el al.• 1980; Shi. 1980). The
quasi-conforming element technique is a general finite element method which treats the
conforming. non-conforming and hybrid elements in a simple and unified way. Many
excellent quasi-conforming elements were obtained for plane stress/strain, plate bending
and shell problems (Tang ('I al.. 1980; ShL 1980; Jiang. 1980; Lu and Liu. 1981 ; Jin. 1980).
A brief introduction for these dements is given by Tang el al. (1983). Several unified C I

thin/thick heam and plate elements were presented by Liu el al. (1984).
There arc two objectives in this paper. The first is to give a convenient form for the

application of the refined two-dimensional theory of the thick cylindrical shells proposed
by the authors (Voyiadjis and Shi. 1\)1)0). The second is to develop an efllcient and accurate
CO thick/thin shell ekment based on the refined shell theory and the quasi-conforming
element technique.

There arc many shell theories in the literature. All the theories could give good results
in the analysis of thin shells. Nevertheless. only a few theories c.," account for the transverse
she'lr deformation. the initial curvature effect. and the contribution of the transverse normal
stress in the analysis of thick shells. A refined two-dimensional theory for thick cylindrical
shells was proposed hy the authors (Voyiadjis and Shi. 1990). This relined shell theory does
not only incorporate the ellcct of the transverse shear deformation. but also takes account
of the effect of the initial curvature and the radial stress. Consequently. the proposed retined
theory gives a very good approximation for the shell constitutive equations. The refined
shell theory was applied to the analysis of thick circular arches in the authors' previous
paper. The numerical examples given by Voyiadjis and Shi (1990) indicate that this theory
can give very good results even for extremely thick arches where the ratio of radius to
thickness Rill is 3. However. the stress resultants and stress couples in the proposed refined
shell theory are not symmetric due to the incorporation of the initial curvature effect. These
unsymmetric stress n:sultants and couples arc not convenient for use in the finite element
analysis. The effective stress resultants and couples are used in this paper to make the stress
resultant and couple tensors symmetric. The strain components which correspond to the
effective stress resultants and couples are also given here. Based on the developed refined
shell theory. a coupled strain energy density is proposed which provides the foundation for
the C" assumed strain element developed in this paper.

The rigid body motion is a dillicult problem to be satisfied in the displacement based
curved finite elements. But the rigid body motion can be satisfied automatically in the quasi­
conforming elements by the assumed strain fields. The spurious mechanism which is a
serious problem in the reduced intcgmtion elements can be avoided in the quasi-conforming
element by the properly chosen strain fields. The rank of the element stiffness matrix of the
quasi-conforming elements can be checked a priori by the given element nodal displacement
vector. the rigid body modes. the assumed strain fields. and the compatibility equations of
the displacement fields. A general approach for the rank analysis of the element stiffness
matrix was given hy Liu el al. (1983). The compatibility equations of the displacements can
be satisfied (l priori in the assumed strain fields. Nevertheless. it will result in more cal­
culations in the formulation of the element stiffness matrix without much improvement of
the accuracy (Shi. 1980). Therefore. the compatibility equations are only used in the rank
analysis but arc not enforced in the assumed strain fields. A good CO thick/thin shell element
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should satisfy the Kirchhoff....Love hypothesis itt the case of the thin plates or shells. The
present CO thick/thin shell element satisfies the Kirchhoff-Love hypothesis by the simple
dependent displacement and rotation interpolations of a straight beam. Therefore. the CO
quasi-eonforming element presented in this paper exhibits neither shear and membrane
locking nor spurious kinematic mode in both thick and thin shell analyses. This CO element
does not only pass the patch test. but also gives very good results for both thick and
thin shells. Two numerical examples are given to illustrate the behavior of the CO quasi­
conforming shell element.

EFFECTIVE STRESS RESULTANTS. STRESS COUPLES AND THE CORRESPONDING
STRAIN COMPONENTS

In the refined two-dimensional theory of thick cylindrical shells proposed by Voyiadjis
and Shi (1990). the average displacements Ii. r. Ii' along the normal at a point on the middle
surface and the average rotations cPt' cP" of the normal are used in the analysis. These
variables are employed instead of the widely used displacements UO. Vo and Wo on the middle
surface of the shell. The average displacements il. V. Ii' and the average rotations cP,,, cP. are
defined as

and

,,~ [I l'fI, ' , I c1po , , ]
I~= 1'0- '41:,": . ~ -(R'-r~)+ ,- '~.-(R--rj)

_ l,~r (I (IX ("2 I'y

(I)

(2)

(3)

(4)

/1Ii' t;
IPI' = ~ -YI' - R"· (5)oy .

In the above e4ualions." is the lhickness of the shell. E is Young's modulus. I' is Poisson's
ralio. R is the radius of the middle surl~lce. flo and fl. arc the normal pressures on the outside
and inside surf.lces of the shell. n:spectivcly, as shown in Fig. I. and Yx and y. are the

Ui,Vj,Wi, epxi,epyi U=I,2,3,4)

c
Fig.!. Thick shell element.
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transverse shear deformations in the generator and circumferential directions. respectively.
Referring to eqns (I )-(5), , j, 'z. CI and Cz are, respectively. expressed as follows:

h
'\ = R-- (6a)

2

h
'z = R+ 2 (6b)

(')c\ = ~ -I (6c)

('J (6d)Cz = 1- 'z .

The modifying terms in eqns (1)-(3) have resulted from the radial stress component (1:.

The constitutive equations for this shell theory. in the case of isotropic Iinear--elastic
material, are expressed in terms of Ii, I', W, 4>< and 4> •. as follows:

and

where

[
1)cfJ,. 111p: 1 (II' Dii 111')J

M, = D~- + v-.··· -+- + v·- +- +k1P, +k~Pn
cy (Ix R R Dx Dy

(
I - I') [DI/>'. 17c/>,. I (il.ii DI')JM =D - ... + .. + .. ---

n· 2 ay Dx RelY Dx

_ (I -v) [DIP: I1lP.. 2i}li]
M ... - D 2 "+,, + R "OJ' ux oy

(
VIi av Iii) D (V4>: 1 VIi)

N x = S -- +v- +v- - - -- + --- +kSPi +k6po
VX vy R R VX R vx

.(V" II' VIi) D (Vl/1, 1 VV Il' )N.=S -;;--+-+v-- +- -."+--+-, +ksp,+k(.{Jl)
J oy R ax R 2y R vy R-

Nn = S (~~ + CE) (~=!) _!!. (1__=:') [iJ4>: + 0!!!- + ~ (D!~ - ~~')J
oy vx 2 R 4 vy clX R vy VX

(Dii 2ii) (I -v) D (I -v) [alP: vcfJ, I(Oii 21')JN =S -+- - +-- - _._+---+- 3-+--
p 2y ax 2 R 4 vy ox R oy ex

(
VIII ii)

Q = T -- - ,I.' - - = Tv.. ox '1"., R ,.

(7)

(R)

(9a)

(9b)

( 10)

(II)

( 12a)

(12b)

( 13)

( 14)
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(4a)

In the above equations, x is the coordinate along a generator, ~' = R¢ is the arc length
along the circumferential direction, D is the flexural rigidity, S is the tensile rigidity and T
is the shear rigidity. The rigidities are defined as follows:

(15)

In eqns (7), (8), (10) and (II), the parameters k; (i = 1,2, ... ,6) are the contributions of
the radial stress (1: and are defined as follows:

and

D I " ,
k. = -VERI -[(2+v)(R'-r:)+2(I+v)r~]

. ('I

D I " ,
k~ = -I' ERJ ('~[(2+v)(R'-rn+2(1+v)ri]

D I " ,
k 1 = -I'

ER
, -[R'-r~+2(I+v)r~1. . (',

D I " 2
k~ = -I' ER

'
('~ [R' -ri +2(1 + v)rd

v "I , ,
k~ = I n' (/~. -r~)

-I,,,'CI

v "I , ,k b = -'--'-, .- (R- -ri).
I-v R- ('2

(16)

(17)

( 18)

(19)

(20)

(21 )

Equations (7) -(14) will result in the C" continuity problem in the finite element analysis.
Due to the presence of the initial curvature effect, the stress resultants and couple

tensors are unsymmetrie. Consequently, the resulting stiffness matrix in the finite element
analysis will not be symmetric. The constitutive equations given by eqns (7)-(12b) are not
convenient for use in the finite element analysis unless the stress resultants and couple
tensors are modified to become symmetric tensors.

The effective twisting stress couple A-l,v and the effective shear stress resultant N,y used
by Niordson (19H5) are adopted here. Therefore, M,y and N,y are defined, respectively, as
follows:

- - 1 . ( I - v) [iJ¢, a¢,v I (aii av)J
M,v = M" = z(Mn + M",) = D -2 iJy + ax + 2R iJy - ax (9)

(12)

We note that the unsymmetric parts in eqns (9a), (9b), (12a) and (12b) arc the terms
associated only with IJR or hJR. We therefore conclude that expressions (9) and (12) are
consequently very good approximations for expressions (9a) and (9b), and (12a) and (12b),
as long as the shell is not extremely thick.
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The membrane strains and the curvatures are defined in tenus of U. f. ~', 4J .. and 4J, as
follows:

I (Cii Cf)
En = 2 cy + ox

(22)

(23)

(24)

(25)

(26)

(27)

The stress resultants and couples may now be expressed in terms of the strain components
given above as follows:

and

M,y = D( I - v)"".

(28)

(29)

(30)

(31 )

(32)

(33)

It can easily be seen that the stress couples arc associated with the membrane strains. and
the stress resultants are coupled with the changes of curvatures. This results in a coupled
strain energy density.

COUPLED STRAIN ENERGY DENSITY AND THE ELEMENT STIFFNESS MATRIX

Using the effective stress resultant and couple. the strain energy density U may be
expressed as follows:
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U = !(MxKx+MyKy+2,l[x•. KXY +Nx&x +N y&. +2N.••&xy +QxYx +Q.yy). (34)

Substituting eqns (13). (14) and (22)-(33) into the above expression. we obtain the following
expression:

(35)

where Ub. Um. UJ and Ubm are. respectively. the quadratic functions ofcurvatures. membrane
strains. transverse shear strain. and the coupled curvatures and membrane strains. However.
in eqn (35) Uo is only the linear function of those strains, If we let

and

.. _ r L" L' ")L" } T
6h - \ "'.f' "'y • .... "'.ty

.. _ r'J "t T
", - \ I." Iy J

(36)

(37)

(38)

then. the strain energy quantities Uh• Um. UJ and Uhm may now be expressed in the matrix
form as follows:

v 0

v (I+_!L) 0

Um = !£!nS
SR 2

Em = !£~S£",

0 I-v ( D )0 '2 1+ SRi

(39)

(40)

(41 )

and

(42)

The strain energy over the domain Q of a finite element is given by

(43)

or
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(44)

The strains Il". Il",. and Il, may be expressed in terms of the nodal displacement vector of the
element q as follows:

Il", = B",q

Il, = B,q.

(45)

(46)

(47)

Substituting expressions (45), (46) and (47) into equation (44), we obtain the following
expression for Or

(48)

or

(49)

where K". K",. K, and Kh", are thc e1emcnt stiffncss matrices relatcd to bcnding, stretch,
transverse shear deformation. and coupling between the bending and stretch. respectively.
In eqn (49) Wu is the strain energy associated with the distributed load normal to the middle
surface of the shell explicitly. The respective stifflH:sses and Wll arc given as follows:

and

K" = fLB/.Tm" dn

K", =fLU,~;SB", dn

K, = fLU:TB, dn

Wo = ;f(Un dn.- Ju
According to the variational principle, the clement stiffness matrix K is given as

(50)

(51 )

(52)

(53)

(54)

(55)

It should be noticed that Uo will not contribute to the stiffness matrix but to the external
force vector since it is only a linear function of the nodal displacement q. Once the strain
fields are given in the form of eqns (45)-(47), the element stiffness matrix can be evaluated
easily using eqns (50)-(55).
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EVALUATING ELEMENT STRAIN FIELD BY THE QUASI-CONFORMING TECHNIQUE

The four node quadrilateral element will be constructed here as the quadrilateral
element is the simplest and most efficient element for cylindrical shell analysis. The nodal
variables ii,. f,. li',. <Pti and <P •., will be used at each node i (i = 1.2.3.4). We therefore have
a CO continuity problem and twenty degrees of freedom in each element. The quasi­
conforming technique (QCT) proposed by Tang et al. (1980) is employed to compute the
element stiffness matrix in this work. In the assumed displacement method. the strains are
evaluated from the assumed displacement field by differentiation. However. the strain field
is interpolated directly in the quasi-conforming elements and the strain field is evaluated
by integrations along the element boundaries/over the element domain.

According to the given nodal variables. the compatibility equations of the displacement
field. and the requirement for the proper rank of the element stiffness matrix (see Liu et al.•
1983). the strain fields are interpolated as follows:

(a) Linear bending strain field

C<P,.
e'y

0p, + cleP •. + ~_ (~.l? _cit;)
iJy elx 2R ely cJx

OCI

(b) "Constant" stretch strain field

lx)'x)' 0]
Ix)'

OC .\

vii

ox oc I 2

[~
Y 0 0

~]
oc I)

Vt; IV
0 I = Pmot",.£". = --+ - = x oc 14vy R
0 0 0

vii Vl;
OC I S

-+- OC I bv)' ox

(c) ConSW1If transverse shear strain

(57)

(58)

where the origin is located at the centroid. and oc" ot2••.•• otIS. are the undetermined strain
parameters. Because of the argument given in the introduction. the compatibility equations
of the displacement field are not enforced a priori in the above strain interpolations.
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Let P be the trial function for the assumed strain field. i.e. I: = Px. and N the cor­
responding test function. The strain parameter x are determined from the quasi-conforming
technique as follows:

:% = A -ICq

where q is the element nodal displacement vector and

(59)

(60)

(61 )

We therefore express the strain field in terms of the nodal displacement as shown below:

I: = P'.! = PA 1Cq = Bq. (62)

In most cases. it is convenient to take N = I) in order to ohtain a symmetric stitrness matrix.
We set N = I) in this work. The m;,trix A in eqn (61l) can he easily evaluated. In quasi­
conforming elements. the most work is involved in evaluating the matrix C.

Based on the bending strain field. similar to that given hy eqn (56), Shi (I YXO) developed
a quadrilateral C I element for plate bending problems that gave excellent results. Let us
now consider the transverse strain 1:.. which is the most dillicult part in the C" element. as
an example to illustrate the basic concepts of the qlwsi-conforming technique.

For conciseness, in the following we will use II, 1', II', and 4), to imply Ii. I~, II', and (p:.
respectively. and ev;,luate £, in a rectangular element. A typical finite clement is illustrated
in fig. I. The matrices A and C obtained for a rectangular dement can be transformed to
the arbitrary quadrilateral element in the customary approadl used for isoparametric
dements (see Zienkicwicz, 1977; Chen and Cheung, 1987). Substituting for P, from eqn
(58) into eqns (60) and (61) and making usc of N, = P" we obtain

(63)

(64)

where n is the element area. n. and n., are the direction cosines along the element boundaries,
and ds is the differential arc-length along the element boundaries. In order to evaluate C,.
we need to construct the displacement w along the element boundaries. as well as the
rotations cP •• cP" and the displacement v over the element. Since the Kirchhoff-Love assump­
tion has to be satisfied for thin shells. consequently. the interpolation for IV should be related
to the nodal rotation values cP.• and cPr This results in the following relations at node (i)
for the case of thin shells:
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awl = 4>xiax j

293

(65)

(66)

The dependent displacement wand rotation 4> for a straight beam of length 1are given by
Hu (1981) as follows:

(67)

cP = - ~)'[I-~2]WI+U2-2~-3)'(I-~2)]cPi

+ ~).[I-~21w,+H2+2~-3).(I-~2)lcPl (68)

where

and

~ = 2x/1 - I ~ ~ ~ I (69)

(70)

In eqn (70), D/T/2 is the parameter of the shear deformation effect. It can be seen that). .....
I as (h/I) 2

..... 0, and win eqn (67) reduces to a Hermite function. For a two-dimensional
problem, we let Lx be the effective length in the x-direction, and Ly the corresponding
effective length in the y-direction. The two-dimensional expressions equivalent to eqn (70)
become

). = I (7Ia)

< (1+12~;)

and

I

A, = (1+12~:Y
(71 b)

In Edwards and Webster's (1976) hybrid stress cylindrical shell element, the explicit
rigid body motion is imposed on the edge displacement interpolations which results in a
very complicated displacement function and more computing work. Here. we merely use
the displacement interpolations w, cP, u, and v for a straight beam, while the rigid body
motion of a curved element is not considered at all. It will be shown these simple dis­
placement interpolations in QCT can give very good results too.
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The interpolations over the element for both ¢, and (¢,+r/R) are required in eqn
(64). However. in tht: area intt:grations of expression (64), the integration ffn ¢, dn is
obtained from L ¢, dx and f" ¢, dy ratht:r than computing it by an explicit interpolation
of ¢, over the element.

Making use of the following expressions

I d · 1-)./.1. A.¢ S = J.(-w,+Uj)+ -,- ('1';+'1',)
I ~

and recalling that ¢, = cll'Vr - i', -r/R, we obtain

(72)

(73)

Let q be the nodal displacement vector expressed as follows:

(75)

Equation (64) now gives

C, = G: CI~ -C11 -C l .\ -e,~ () - CI~ -C11 -CI .\ ell

C~~ -C~\ -C~.\ -C~I 0 e~~ C~\ c~.\ -C~5

0 CI~ ell -C1.\ -C15 0 -CI~ C I3 -C14 CIS]
0 C22 C2J -C2.\ -C2S 0 C22 -C23 C24 -C2S

(76)

where

. 1-).,. ,
C - ---h"

I! - 12R '

1-).,.
C" = - -----ah

-- 4R'

1-).,
C - -- h

13 - 2 '

1-).,.
C'l = _ .. ...c a,

" 2
I - A, ,

C - ---. a"
H - 12 '

I-)"h'e -. ­
15 - 12

(77)

It is easy to verify that e. = l/nC,q ..... 0 for thin shells in which ).y ..... I and )., ..... I as
(/1/L,)! ... 0 and (hiLY .... o. .

Cmfor 8mand C" for 8h can be obtained in a similar way. The explicit forms of Am' Cm,
Ah and Ch are given in the Appendix. We finally have:

f.h = P"A,,' IC"q = Bhq

em = PmA';; I Cmq = Bmq

I
f.. = nC,q = B.•q.

Substituting eqns (78)-(80) into eqns (50)-(53), we obtain

(78)

(79)

(80)
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(81)

(84)

(82)

(83)

K,.. = C~A';; Tfi P~SP'" dnA,;; I C'"

K, = C;(f/n)C,

Kb", = cfAb- T fi PfFP", dnA,;; I C"'.

The external load vector can be evaluated in the usual way. However, the additional
load resulting from the radial stress effect as given by eqn (54) and the equivalent distributed
moments exerted by distributed load on the surfaces of the shell as shown by Voyiadjis and
Shi (1990) should be incorporated for thick shells.

NUMERICAL EXAMPLES

Due to the initial curvature effect. the behavior of curved shell elements is totally
different from that of flat plate elements. Many curved shell elements may give quite good
results when used in the analysis of shallow shells. On the other hand. they give a poor
performance when used in the analysis of deep shells. In the case of moderately thick
analysis of shells. we note th.lt C I and CO shell elements converge satisfuctorily. However.
they cannot converge to the correct solution for the case of thin shell analysis. Furthermore.
some C' clements exhibit sheur locking. Ashwell and Sabir (1972) pointed out that deep
und thin shells arc more testing than shallow and moderately thick shells. Therefore. a deep
pinched cylindricul shell shown in Fig. 2 is analyzed for two different thicknesses to test the
behavior of the CO assumed strain element given in the previous section. Only one octant
of the shell is considered because of the symmetry.

In the first exumple. p = 100 Ibf. II = 0.094 in. which results in Rill = 53. a moderately
thick shell. The deflections at the load point obtained by different elements arc listed in
Table I in which Purk and Stanley's results (1986) arc those given by their 4-ANS CO
clement.

The second exumple conce'rns u thin shell in which Rill = 320 (II = 0.01548 in.) and

E=10.5KI06

v- 0.3125
R- 4.956
La 10.35

Fig. 2. Pinched cylindrical shell.

Table I. Dcnection for moderately thick pinched cylinder

Ashwell and Park and Cantin and
Mesh Prescnt Sabir (1972) Stanley (1986) Mesh Clough (1968)

2x2 0.904 0.1103 0.0703 (I x S) 0.0769
4x4 0.1068 0.1129 0.1002 (2 x9) 0.1073
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Table 2. Del1ection for thm cylindncal shell

Cantin and Ashwell and Sabir and
Mesh Present Clough (1%1<) Sabir ( 1972) Lock (1972)

I x I 0.01091 0.00001 IJ02301 OO1סס.0

I x 2 0.022.t0
Ix-t 0.02~08 O.OO07~ O.02~3 0.00063
8x8 0.OO70X O.02~31 0.00706

p = 0.1 Ibf. Ashwell and Sabir (1972) stated that the analytical solution of this problem is
0.02439 in. The deflections given by different researchers are tabulated in Table 2. As
mentioned earlier. even though some shell elements can give quite good results in the
analysis of moderately thick shells. they may exhibit very poor performance in the case of
thin shell analysis. Furthermore. they may not converge to the correct solution even for a
very fine mesh. The two tables show that the present CO quasi-conforming element converges
very fast and gives very good results for both thick and thin shell analysis.

CLOSURE

By the simple modification of the constitutive equations. the relined two-dimensional
shell theory proposed by the authors can be easily applied to the finite element analysis.
Unlike most shell theories. the strain energy density resulting from the proposed relined
shell theory is a coupled strain energy (between bending strains and stretch strains) and is
an explicit function of the distributed load. Therefore. the coupled strain energy density
presented here takes account for not only the transverse shear strains. but also the initial
curvature ellcct as well as the contribution of the radial stresses in the shells.

A simple and ellicil:nt ell quadrilateral shell e1eml:nt is developed here based on the
coupled strain energy density and the quasi-conforming element technique. The stilfness
matrix prl:sented here is given explicitly. This quasi-conforming CIl shell clement is valid
for both thick and thin shell analysis. All the deficiencies encountered in the construction
of curved ('II elements can be overcome very easily through the quasi-conforming element
technique. In quasi-conforming elements. the rigid body motion can be guaranteed auto­
matically by the assumed strain fields for both Ilat and curved clements; the spurious zero
energy modes can be prevented by the proper strain fields for the given element nodal
variables without differences for both flat and curved elements too; the shear locking
can be avoided by the dependent displacement and rotation interpolations for a simple
Timoshenko beam which satislles the Kirchhofl'-Iove hypothesis in the case of the thin
plates and shells. Therefore. thl: quasi-conforming element technique is a natural and
powerful approach in the formulation of various types of finite clements. The numerical
examples solved here show the quasi-conforming C II shell element gives good results for
both thick and thin shells. This element is extremely ellicil:nt for nonlinear analysis of shells
since there is no numerical integration used in the formulation of the stiffness matrix.
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AI'PENDIX

Till! l!xplicit forms of Am. Cm. Am lIt1d Cb

'0=,,[1
0 0

,L]11'/12 0

0 1 (AI)

0 0

[_m 0 0 0 0 -m, 0 0 0 0

m, 0 0 0 0 -tt,: 0 0 0 0

Cm = 0 -ntH mil m'4 m" 0 "',J: n')l n'I" -mJl
0 m., -m,u m H 0 0 -n'42 -n'.. l n' .... 0

-m , -m, 0 0 0 m , -m, 0 0 0

m, 0 0 0 0 "" 0 0 0

?']
m, 0 0 0 0 -m, 0 0 0

0 m" /til) -m H m" 0 -m" m.\) -m H (A2)

0 m .. : n· 4 _, m.. 0 0 -m.. : m4J m ..

m , m, 0 0 0 -m , m, 0 0

in which
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m,=~. m,=~, m,,=~-;~(~)'.
ool al alb

m"=24R' m"=i2' m"=24R'
ab'

m.. = 240R' (A3)

(A4)

where

0 0 0
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0
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0 0
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b'0 0
12
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alb'
0 0 0 144
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in which
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