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Abstract—This is a companion paper of the authors’ previous one. In this paper. a convenient form
of the refined two-dimensional shell theory for the thick cylindrical shells proposed by the authors
is given: and a simple and efficient C° quadrilateral shell element is developed by the quasi-
conforming element technique. The element stiffness matrix presented here is given explicitly. This
C° thick/thin shell clement satisfies the rigid body motion, passes the patch test and exhibits neither
shear locking and membrane locking nor spurious kinematic modes. The numerical examples solved
here demonstrate that the C” quasi-conforming shell element gives very good results in the analysis
of both thick and thin shells.

INTRODUCTION

C* shell finite elements are simple and efficient clements in the analysis of thin structures.
However, many C” elements exhibit some deficiencics in the analysis of thin plates and
shells, such as the shear locking and spurious kinematic modes. In the past few years, the
shear locking and spurious modes of C” clements have received increasing attention from
rescarchers (Hughes and Hinton, 1986 ; Atluri and Yagawa, 1988), and many approaches
were proposed to construct reliable and accurate C° elements for the analysis of both thick
and thin plates and shells. Up to now, most of the C? elements are based on the degenerated
shell element given by Ahmad ef al. (1970). The transverse shear locking problem in the
degenerated shell clement can be solved by the use of the reduced or selective integration
technique (Zienkiewicz es al., 1971 ; Hughes, 1987). However, the reduced integration may
result in the development of spurious zero strain  energy modes. Consequently, these
kind of elements are not very reliable, The employment of discrete Kirchhoff constraints
(Wempner er al., 1968 ; Li et al., 1985) is another approach to avoid shear locking for C°
elements. Unfortunately, the discrete Kirchhofl constraints lead to complex inversion and
calculations in the formulation of the element stiffness matrix (Li er «l., 1985). A new
method to construct C! elements, is to employ the so-called enhanced interpolations of the
transverse shear strain and membrane strain (Huang and Hinton, 1986) or assumed natural-
coordinate strains (Park and Stanley, 1986). The C* elements based on the enhanced strains
can overcome the shear locking and spurious kinematic mode problems and give quite good
results. However, like all other degenerated elements, numerical integration is used in the
formulation of these elements even in the case of flat plate clements. As it is well known,
the numerical integration is very time consuming especially in noalinecar problems where
the stiffness matrix has to be evaluated many times during the analysis.

[t scems that Ashwell (1976) first used the term of strain element. But in his strain
elements, the strain functions are only used to form curved finite element shape functions
in order to satisfy the rigid body motion of a curved element. Thercfore, these strain
elements still belong to the conventional assumed displacement elements. In Huang and
Hinton’s element (1986), only the transverse shear strain and membrane strain are interp-
olated. In Park and Stanley’s element (1986), the strains are interpolated along the so-called
reference lines. Consequently, elements given by Huang and Hinton (1986), and Park and
Stanley (1986) are not based on the general strain fields.
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Tang et al. (1980) and Chen and Liu (1980) proposed a simple and fundamental finite
element approach called “Quasi-Conforming Element Technique™ (QCT). In the quasi-
conforming element, the element strain fields are interpolated directly rather than obtained
from the assumed displacement field. The element strains can be expressed in terms of the
element nodal displacement vector by integration along the element boundaries together
with the string net functions, which are similar to the edge displacement interpolations in
Pian’s (1964) hybrid stress element. Based on the element strain field, the element stiffness
matrix can be evaluated in the usual way. Another very important feature of quasi-con-
forming elements is that all the integrations can be done directly without the employment
of the numerical integration. Consequently, the quasi-conforming element technique can
give the explicit form of the stiffness matrix. Furthermore, because the strain fields are
interpolated directly rather than being derived from the assumed displacement field, the
quasi-conforming elements give very accurate stresses (Tang er al., 1980 ; Shi, 1980). The
quasi-conforming element technique is a general finite element method which treats the
conforming. non-conforming and hybrid elements in a simple and unified way. Many
excellent quasi-conforming elements were obtained for plane stress/strain, plate bending
and shell problems (Tung ¢t a/.. 1980 ; Shi. 1980 ; Jiang, 1980 ; Lu and Liu, 1981 ; Jin, 1980).
A brief introduction for these elements is given by Tang et al. (1983). Several unified C'
thin/thick beam and plate elements were presented by Liu er al. (1984).

There are two objectives in this paper. The first is to give a convenient form for the
application of the refined two-dimensional theory of the thick cylindrical shells proposed
by the authors (Voyiadjis and Shi, 1990). The second is to develop an efficient and accurate
C* thick/thin shell clement based on the refined shell theory and the quasi-conforming
clement technique,

There are many shell theories in the literature. All the theories could give good results
in the analysis of thin shells. Nevertheless, only a few theories can account for the transverse
shcar deformation, the initial curvature effect, and the contribution of the transverse normal
stress tn the analysis of thick shells. A refined two-dimensional theory for thick cylindrical
shells was proposed by the authors (Voyiadjis and Shi, 1990). This refined shell theory does
not only incorporate the effect of the transverse shear deformation, but also takes account
of the effect of the initial curvature and the radial stress. Consequently, the proposed refined
theory gives it very good approximation for the shell constitutive equations. The refined
shell theory was applied to the analysis of thick circular arches in the authors’ previous
paper. The numerical examples given by Voyiadjis and Shi (1990) indicate that this theory
cun give very good results even for extremely thick arches where the ratio of radius to
thickness R/his 3. However, the stress resultants and stress couples in the proposed refined
shell theory are not symmetric due to the incorporation of the initial curvature effect. These
unsymmetric stress resultants and couples are not convenient for use in the finite element
analysis. The effective stress resultants and couples are used in this paper to make the stress
resultant and couple tensors symmetric. The strain components which correspond to the
effective stress resultants and couples are also given here. Based on the developed refined
shell theory, a coupled strain energy density is proposed which provides the foundation for
the C* assumed strain clement developed in this paper.

The rigid body motion is a ditficult problem to be satisfied in the displacement based
curved finite clements. But the rigid body motion can be satisfied automatically in the quasi-
conforming clements by the assumed strain ficlds. The spurious mechanism which is a
serious problem in the reduced integration elements can be avoided in the quasi-conforming
clement by the properly chosen strain fields. The rank of the element stiffness matrix of the
quasi-conforming elements can be checked a priori by the given element nodal displacement
vector, the rigid body modes, the assumed strain fields, and the compatibility equations of
the displacement ficlds. A general approach for the rank analysis of the element stiffness
matrix was given by Liu er al. (1983). The compatibility equations of the displacements can
be satisfied a priori in the assumed strain rields. Nevertheless, it will result in more cal-
culations in the formulation of the clement stiffness matrix without much improvement of
the accuracy (Shi, 1980). Thercfore, the compatibility equations are only used in the rank
analysis but are not enforced in the assumed strain fields. A good C° thick/thin shell element
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should satisfy the Kirchhoff-Love hypothesis in the case of the thin plates or shells. The
present C* thick/thin shell element satisfies the Kirchhoff-Love hypothesis by the simple
dependent displacement and rotation interpolations of a straight beam. Therefore, the C°
quasi-conforming element presented in this paper exhibits neither shear and membrane
locking nor spurious kinematic mode in both thick and thin shell analyses. This C° element
does not only pass the patch test, but also gives very good results for both thick and
thin shells. Two numerical examples are given to illustrate the behavior of the C° quasi-
conforming shell element.

EFFECTIVE STRESS RESULTANTS, STRESS COUPLES AND THE CORRESPONDING
STRAIN COMPONENTS

In the refined two-dimensional theory of thick cylindrical shells proposed by Voyiadjis
and Shi (1990), the average displacements 4, ¢, w along the normal at a point on the middle
surface and the average rotations ¢.. ¢, of the normal are used in the analysis. These
variables are employed instead of the widely used displacements u,. vy and w, on the middle
surface of the shell. The average displacements &, &, w and the average rotations ¢,, ¢, are
defined as
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In the above equations, /t is the thickness of the shell, £is Young’s modulus, v is Poisson's
ratio, R is the radius of the middle surfice, p, and p; are the normal pressures on the outside
and inside surfaces of the shell, respectively, as shown in Fig. 1, and y, and y, are the

Ui Viy Wi, Pyio Py li= 1,2,3,4)

C
Fig. 1. Thick shell element.
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transverse shear deformations in the generator and circumferential directions, respectively.
Referring to eqns (1)—(5), r,. r2, ¢, and c, are, respectively. expressed as follows:

o

(6a)

(6b)

(6¢)

(6d)

The modifying terms in eqns (1)-(3) have resulted from the radial stress component o..
The constitutive equations for this shell theory, in the case of isotropic linear—lastic
material, are expressed in terms of &, ¢, w, ¢, and ¢, as follows:
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¢ = ¢ — (4a)

u
R
In the above equations, x is the coordinate along a generator, » = R¢ is the arc length

along the circumferential direction, D is the flexural rigidity, S is the tensile rigidity and T
is the shear rigidity. The rigidities are defined as follows:

ER* Eh
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In eqns (7). (8). (10) and (11). the parameters &, (i = 1,2, ..., 6) are the contributions of
the radial stress ¢. and are defined as follows:
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Equations (7) -(14) will result in the C° continuity problem in the finite element analysis.

Due to the presence of the initial curvature effect, the stress resultants and couple
tensors are unsymmetric. Consequently, the resulting stiffness matrix in the finite element
analysis will not be symmetric. The constitutive equations given by eqns (7)-(12b) are not
convenicnt for use in the finite element analysis unless the stress resultants and couple
tensors are modified to become symmetric tensors.

The effective twisting stress couple M., and the effective shear stress resultant N, used
by Niordson (1985) are adopted here. Therefore, M,y and 1\7,, are defined, respectively, as
follows:

. I—\[d¢. 80, 1| (oa &
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We note that the unsymmetric parts in eqns (9a), (9b), (12a) and (12b) are the terms
associated only with 1/R or A/R. We therefore conclude that expressions (9) and (12) are
consequently very good approximations for expressions (9a) and (9b), and (12a) and (12b),
as long as the shell is not extremely thick.
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The membrane strains and the curvatures are defined in terms of &, 7, W, ¢,. and ¢, as
follows:

A 22)
°x

6 = ‘i + (23)

o = ;(g% S—‘) 24)

Ko = I("é‘ + ”/1) * a7 (‘wf - 7_;) 2N

The stress resultants and couples may now be expressed in terms of the strain components
given above as follows:

|
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l
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N, =SU -2 (33
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It can easily be seen that the stress couples are associated with the membrane strains, and
the stress resultants are coupled with the changes of curvatures. This results in a coupled
strain encrgy density.

COUPLED STRAIN ENERGY DENSITY AND THE ELEMENT STIFFNESS MATRIX

Using the effective stress resultant and couple, the strain energy density U may be
expressed as follows:
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U= YMx,+Mx,+2M,x,,+N.e +N,e,+2N6,+0.7.+0,7,). (34)

Substituting eqns (13), (14) and (22)~(33) into the above expression, we obtain the following
expression :

U=U,+U,+U+Um+U, (35)

where U,. U,,, U,and U,,, are, respectively, the quadratic functions of curvatures, membrane
strains, transverse shear strain, and the coupled curvatures and membrane strains. However,
in eqn (35) U, is only the linear function of those strains. If we let

& = {Ke K 2K )T (36)

= (£ €pu 26 37
and

&= {ven,)’ (38)

then, the strain energy quantitics U,, U,. U, and U,,, may now be expressed in the matrix
form as follows:

1l v 0
v | 0
U[, = éﬂ:[) | —~v e = éz;bch (39)
0 0 -
2
[ v 0 )
D
U, =lelS e, = lelSe, (40)
l—v D
0 0 — 1+ 3
i 2 <I+SR‘)J
AT 0
= lel = le"Te, 4
U, = g [0 T]e, 1l Te, (41)
and
-1 0 0
2D
Um=1tef 5 | 01 Oe, =Fe, 42)
0 0 0

The strain energy over the domain Q of a finite element is given by

1, = IL UdQ (43)

or
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1
M, =5 J-J' [e7 De, + ¢! Se,, +& Te, + &l Fe,, + U, dQ. (44)
- 14

The strains ¢,. &.. and & may be expressed in terms of the nodal displacement vector of the
element q as follows:

& = B,q (45)
g, = B,q (46)
s, = Bq. 47

Substituting expressions (45). (46) and (47) into ecquation (44), we obtain the following
expression for I1,

M =1q" f j (B/DB, + BZSB,, + B/TB, + B/FB,] dQq+ W, (48)
N

or l
M, = q"[K.+K, +K, +K,,]Jq+ W, 49)
where K, K., K, and K,,, are the clement stiffness matrices related to bending, stretch,

transverse shear deformation, and coupling between the bending and streteh, respectively.
In eqn (49) W, is the strain energy associated with the distributed load normal to the middle

surfuce of the shell explicitly. The respective stiffnesses and B, are given as follows
rr
K,= || B/DB, dQ (50)
JJu
~r
K, = B.SB, dQ (51
J oS
rr
K, = B/TB, dQ (52)
JJa
rr
K = B, FB, dQ (53)
J JO
and
o
Wo= 51| UsdQ. (54)
- 1

According to the variational principle, the clement stiffness matrix K is given as
K= Kb+Km+Kt+é(Khm+Kf{m) (55)

It should be noticed that U, will not contribute to the stiffncss matrix but to the external
force vector since it is only a linear function of the nodal displacement q. Once the strain
fields are given in the form of eqns (45)-(47). the element stiffness matrix can be evaluated
easily using eqns (50)-(55).
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EVALUATING ELEMENT STRAIN FIELD BY THE QUASI-CONFORMING TECHNIQUE

The four node quadrilateral element will be constructed here as the quadrilateral
element is the simplest and most efficient element for cylindrical shell analysis. The nodal
variables 4,. .. W, ¢, and ¢, will be used at each node i (i = 1, 2, 3, 4). We therefore have
a C° continuity problem and twenty degrees of freedom in each element. The quasi-
conforming technique (QCT) proposed by Tang et al. (1980) is employed to compute the
element stiffness matrix in this work. In the assumed displacement method, the strains are
evaluated from the assumed displacement field by differentiation. However, the strain field
is interpolated directly in the quasi-conforming elements and the strain field is evaluated
by integrations along the element boundaries/over the element domain.

According to the given nodal variables, the compatibility equations of the displacement
field. and the requirement for the proper rank of the element stiffness matrix (see Liu et al.,
1983). the strain fields are interpolated as follows:

(a) Linear bending strain field

r 3

c.
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o,

cy

e O, 1 (da o6
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L&y dx  2R\dy  dx/
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lxyxy 0 :
o
= Lxyxy 3. b =Pa. (56)
0 Ixy )
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(b) “Constant’ stretch strain field
- 3
oi [ )
5_ a2
* I » 000 %5
ar W J
t:,,,=<b-;-+-l—e =10 0 I x O . ¢ =P, (57)
0 0 0 0 1
o i ws
[0y Ox ] Sy
(c) Constant transverse shear strain
aw
e _¢x
=4 = {“”}= P, (58)
ow 0 0 1] (o
v R

where the origin is located at the centroid, and «a,, a,,...,a,s, are the undetermined strain
parameters. Because of the argument given in the introduction, the compatibility equations
of the displacement field are not enforced a priori in the above strain interpolations.
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Let P be the tnal function for the assumed strain field. i.e. £¢ = Px. and N the cor-
responding test function. The strain parameter x are determined from the quasi-conforming
technique as follows:

2= A" 'Cq (59)

where q is the element nodal displacement vector and

A= J.J NP dQ (60)
Q

Cq=JJ- N’ dQ. (61)
4]

We therefore express the strain field in terms of the nodal displacement as shown below :
g=Px=PA 'Cq=Bq. (62)

In most cascs, it is convenient to tiake N = P in order to obtain a4 symmetric stitfness matrix.
We sct N = P in this work. The matrix A in ¢gn (60) can be casily evaluated. In quasi-
conforming clements, the most work is involved in evaluating the matrix C.

Bascd on the bending strain ficld. similar to that given by egn (56). Shi (1980) developed
a quadrilateral C' element for plate bending problems that gave excellent results. Let us
now consider the transverse strain g, which is the most difficult part in the " element, as
an example to illustrate the basic concepts of the quasi-conforming technique.

For conciscness, in the following we will use w, ¢, w, and ¢, to imply @, &, . and ¢,
respectively, and evaluate e, in a rectangular element. A typical finite clement is illustrated
in Fig. L. The matrices A and C obtained for a rectangular clement can be transformed to
the arbitrary quadrilateral element in the customary approach used for isoparametric
clements (see Zienkiewicz, 1977; Chen and Cheung, 1987). Substituting for P, from cqn
(58) into eqns (60) and (61) and making usc of N, = P,, we obtain

1 0 1 0
A":[o IML"Q=Q[O l:l ()
ow
= b,
B v B d‘-
Clq B J‘J iy dQ N § {“n‘ \} —fv[ e dQ (64)
o | o v wn, ds b+ R

ad "R

where Qis the element area, n, and a, are the direction cosines along the element boundarics,
and ds is the differential arc-length along the element boundaries. In order to evaluate C,,
we need to construct the displacement w along the element boundarics, as well as the
rotations ¢,, ¢, and the displacement v over the element. Since the Kirchhoff-Love assump-
tion has to be satisfied for thin shells. consequently, the interpolation for w should be related
to the nodal rotation values ¢, and ¢,. This results in the following relations at node (i)
for the case of thin shells:
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ow

E,‘ = ¢xi (65)
ow v;
a—y ; = ¢yi+ E (66)

The dependent displacement w and rotation ¢ for a straight beam of length / are given by
Hu (1981) as follows:

1 A I s l
w=§[l—c+5(c’—c)]wi+3[1-:~+1(¢’—¢)15¢.
1 A [ 2 3 /
F3[14E=3@ =0 |+ =148+ 40156, (6

b= = 2 Al = Ew + 228~ 31 -9,
+ 20 -+ 2426 =300 -9, ()

where
E=2)l —1<EKH (69)
and

PR (70)

D
(I-HZ;I;F)

In egn (70), D/T!* is the parameter of the shear deformation effect. It can be seen that 4 —
1 as (h/l)* = 0, and w in eqn (67) reduces to a Hermite function. For a two-dimensional
problem, we let L, be the effective length in the x-direction, and L, the corresponding
effective length in the y-direction. The two-dimensional expressions equivalent to eqn (70)
become

Ae=—0— (7ta)

and

b= (71b)
(2]

In Edwards and Webster’s (1976) hybrid stress cylindrical shell element, the explicit
rigid body motion is imposed on the edge displacement interpolations which results in a
very complicated displacement function and more computing work. Here, we merely use
the displacement interpolations w, ¢, u, and v for a straight beam, while the rigid body
motion of a curved element is not considered at all. It will be shown these simple dis-
placement interpolations in QCT can give very good results too.

Sas-£
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The interpolations over the element for both ¢, and (¢, +t/R) are required in eqn
(64). However. in the area integrations of expression (64), the integration | [ ¢, dQ is
obtained from f, ¢, dx and |, ¢, dy rather than computing it by an explicit interpolation
of ¢, over the element.

Making use of the following expressions

-

f wds = L (4 )+ 13 (61— ) (72)

l

, 1-4
J b ds = i(—w, 1)+ — L U(di+) (73)
i <
and recalling that ¢, = dw/Cy—7, — /R, we obtain

%“"hd-‘—J‘J\ ¢ dxdy = g {(l — AN =w —wrtwy ] - Q;z%“) alpa+d.+da+d.]
o

t—4, -4,
T CTNEY N —v:+v_1—m}. (74)

Let q be the nodal displacement vector expressed as follows :

q= {0 o d o wa o Pt Ca Wi b P v Wy, Beanta} r

(7%)

Equation (64) now gives

C _ 0 (l‘ “(” "(.'1.1 "CH ) —'Cl’ —(l\ —CI-I CIS
T () (_v: “'ct\ “('_’4 —'(,g 0 C:: (a\ (v_‘ —‘(,35
0 Cp Cy =Cy =Cis 0 =Cn Cyy —Cyy <.5] 76)
0 Cy; Cyy —Cy —Cis 0 Cy; —Cy Cis Css
where

l.—}_v 5 1 ;'\' ! I Ay pa
C|1 = l‘zk‘h' Cl\ - ’2“‘ b Cl-l = 4 - (l/), Cl5 - ‘12 b*

-4 T e b P
Cin=— —[E»wl , C;; = ““é'*' da, 4 = _Tz_du . s = 7‘*(1 : (77)

[t is casy to verify that e, = 1/QC,q— 0 for thin shells in which 4, -1 and A, — | as
(A/L)* =0 and (h/L,)* —0.

C,, for &, and C, for g, can be obtained in a similar way. The cxplicit forms of A,,.. C,,.,
A, and C, are given in the Appendix. We finally have:

&y = PhAI; IC;,q = B[,q (78)

e, =P,A;'C.q=8B,q 79)
l

g = §C,q = B,q. (80)

Substituting eqns (78)-(80) into eqns (50)-(53), we obtain
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Kb=C[A;’fLP{DPb dOA;'C, (81)
K, = CI,A,,‘.TJ. L PISP, dQA;'C, (82)
K, = C[(T/Q)C, (83)
K., = CT A,,-T”; PIFP, dQA;'C,. (84)

The external load vector can be evaluated in the usual way. However, the additional
load resulting from the radial stress effect as given by eqn (54) and the equivalent distributed
moments exerted by distributed load on the surfaces of the shell as shown by Voyiadjis and
Shi (1990) should be incorporated for thick shells.

NUMERICAL EXAMPLES

Due to the initial curvature effect. the behavior of curved shell elements is totally
different from that of flat plate elements. Many curved shell elements may give quite good
results when used in the analysis of shallow shells. On the other hand. they give a poor
performance when used in the analysis of deep shells. In the case of moderately thick
analysis of shells, we note that C' and C° shell elements converge satisfactorily. However,
they cannot converge to the correct solution for the case of thin shell analysis. Furthermore,
some C" clements exhibit shear locking. Ashwell and Sabir (1972) pointed out that decp
and thin shells are more testing than shallow and moderately thick shells. Therefore, a deep
pinched cylindrical shell shown in Fig. 2 is analyzed for two different thicknesscs to test the
behavior of the C® assumed strain clement given in the previous section. Only one octant
of the shell is considered because of the symmetry.

In the first example, p = 100 1bf, A = 0.094 in. which results in R/A = 53, a moderately
thick shell. The deflections at the load point obtained by different elements are listed in
Table 1 in which Park and Stanley’s results (1986) are those given by their 4-ANS C°
clement.

The second example concerns a thin shell in which R/A = 320 (h = 0.01548 in.) and

P
I.—L/Z_.‘_le_—_l
4 E=10.5 x 10®
/ v+ 0.3125
R Rz 4,956
L=10.35

——————

Fig. 2. Pinched cylindrical shell.

Table 1. Deflection for modcerately thick pinched cylinder

Ashwell and Park and Cantin and
Mesh  Present Sabir (1972) Stanley (1986) Mesh Clough (1968)
2x2 0.904 0.1103 0.0703 (1x5) 0.0769

4x4 0.1068 0.1129 0.1002 (2x9) 0.1073
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Tabie 2. Deflection for thin cylindrical shell

Cantin and Ashwell and Sabir and
Mesh Present Clough (1968) Sabir (1972) Lock (1972)
[ x| 0.01091 0.00001 0.02301 0.00001
Ix2 0.02240
x4 0.02408 0.00074 0.02303 0.00063
8x8 0.00708 0.02431 0.00706

p = 0.1 Ibf. Ashwell and Sabir (1972) stated that the analytical solution of this problem is
0.02439 in. The deflections given by different reseurchers are tabulated in Table 2. As
mentioned earlier, even though some shell elements can give quite good results in the
analysis of moderately thick shells, they may exhibit very poor performance in the case of
thin shell analysis. Furthermore, they may not converge to the correct solution even for a
very fine mesh. The two tables show that the present C° quasi-conforming element converges
very fast and gives very good results for both thick and thin shell analysis.

CLOSURE

By the simple modification of the constitutive equations, the refined two-dimensional
shell theory proposed by the authors can be casily applied to the finite element analysis.
Unlike most shell theorics, the strain energy density resulting from the proposed refined
shell theory is a coupled strain energy (between bending strains and stretch strains) and is
an explicit function of the distributed load. Therefore, the coupled strain energy density
presented here takes account for not only the transverse shear strains, but also the initial
curvature cffect as well as the contribution of the radial stresses in the shells.

A simple and eflicient C° quadrilateral shell element is developed here based on the
coupled strain cnergy density and the quasi-conforming clement technique. The stiffness
matrix presented here is given explicitly. This quasi-conforming C° shell element is valid
for both thick and thin shell analysis. All the deficiencies encountered in the construction
of curved € elements can be overcome very casily through the quasi-conforming clement
technique. In quasi-conforming clements, the rigid body motion can be guaranteed auto-
matically by the assumed strain ficlds for both flat and curved clements ; the spurious zero
energy modes can be prevented by the proper strain fields for the given element nodal
variables without differences for both flat and curved clements too; the shear locking
can be avoided by the dependent displacement and rotation interpolations for a simple
Timoshenko beam which satisfies the Kirchhoff-love hypothesis in the case of the thin
plates and shells. Therelore, the quasi-conforming element technique is a natural and
powerful approach in the formulation of various types of finite elements. The numerical
examples solved here show the quasi-conforming CY shell element gives good results for
both thick and thin shells. This element is extremely eflicient for nonlinear analysis of shells
since there is no numerical integration used in the formulation of the stiffness matrix.
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Machines Corporation, and Martin Marietta Manned Space Systems at New Orleans. We also wish to thank Ms.
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APPENDIX
The explicit forms of A,,. C,.. A,, and C,
t 0 0 0
0 4’12 0 0
A, =uab | 0 t 0 (Al)
0 0 0 Y12
~m, 0 0 0 0 -m 0 0 0 0
m, 0 0 0 0  ~m, 0 0 0 0
C,= 0 —myy, my, my, my, 0 my, myy, o omy, —my,
0 my, =—-mgy my 0 0 —Myy —mMygy My 0

~my, -—m, 0 0 0 m, —-m, 0 0 0

m, 0 0 0 0 m, 0 0 0 0
m, 0 0 0 0 -m, 0 0 0 0
0 my; my, —my, my, 0 ~my; my, —my, my, |, (A2)
0 my, my, my, 0 0 ~mg my mg, 0
my, m, 0 0 0 -my; m, 0 0 0

in which
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b b’ a aifby ab a‘h
T TR M TiTn\R) ™ TR ™ T R
ab’ at ab ab? a
TR M T MO T Rr M Tipr ™73
Ay, 0 ]
A, = 0 A, 0 ,
0 0 A,
where
re o o0 0 7
&
0 R 0 0
bl
Ay =ab 0 0 B 0
a‘b’
Lo 0 0 l“ e
I 0 0
05 0
A:z = ab b R
b.
0 0 H
0 0 0 —b, 0 0 [\ 0
0 b, b, b, by 0 —h,, by,
0 0 0 b 0 0 0 0
0 -bh,, —bhy, —h,, —bhy 0 ~bhy, by,
0 0 0 0 ~hy, 0 0 0
C, = uh 0 0 0 0 by 0 0 0
0 hys by, b, hs 0 by —bhy,
0 ~bys —bhys — by —bys 0 ~bhy hyy
= by, by, hyy —bhay —by, by, h": ~bu,
b by by baa by, —by, L ~ by
L0 ~by, by, bis b, 0 b, by,

0 0 0 b, 0 0 0 0

0 —by, by by, by 0 b =bhy,
0 0 [ 0 0 0 0

0 bu 'b-n hu hu 0 [’4.‘ hu
0 0 0 by, 1] 0 0

0 0 0 0 by 0 0 0
0 by, —~by, by, by 0 hrs by,

0 /’n: —”u hu hn 0 hn: bnl
by, —by, by, bay by "bw —b»: —bys
blll bu_‘ _'hUJ bU-l bus ‘hul bu.’ hul
0 "hl‘ “/’n bu hli hl: _hll

in which
l ib i i ib
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A, A a al I?]
bry=7. b= 53R’ by ioh° by isoh b= 3
1 | Ao [ t
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ba, R bo; R’ boy = 35" byy = T3 bos = I
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